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ABSTRACT The wide adoption of location-enabled devices, together with the ac-
ceptance of services that leverage (personal) data as payment, allows scientists to
push through some of the previous barriers imposed by data insufficiency, ethics
and privacy skepticism. The research problems whose study require hard-to-obtain
data (e.g., transportation mode detection, service contextualization, etc.) have
now become more accessible to scientists because of the availability of data collect-
ing outlets. One such problem is the detection of a user’s transportation mode.
Different fields have approached the problem of transportation mode detection with
different aims: Location Based Services is a field that focuses on understanding
the transportation mode in real-time, Transportation Science is a field that fo-
cuses on measuring the daily travel patterns of individuals or groups of individuals,
and Human Geography is a field that focuses on enriching a trajectory by adding
domain-specific semantics. While different fields providing solutions to the same
problem could be viewed as a positive outcome, it is difficult to compare these solu-
tions because the reported performance indicators depend on the type of approach
and its aim (e.g., the real-time availability of Location Based Services requires the
performance to be computed on each classified location). The contributions of this
paper are three fold. First, the paper reviews the critical aspects desired by each re-
search field when providing solutions to the transportation mode detection problem.
Second, it proposes three dimensions that separate three branches of science based
on their main interest. Finally, it identifies important gaps in research and future
directions, i.e. proposing: widely accepted error measures meaningful for all disci-
plines, methods robust to new datasets and a benchmark dataset for performance
validation.

Keywords Transportation Mode Detection; Transportation Segmentation; Loca-
tion Based Services; Transportation Science; Human Geography.

1 Introduction

The in-parallel development of distinct research branches concerned with solving
the same problem, makes it difficult to compare employed methodologies because
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of the definition of success that is specific to each research branch. Although
finding the common ground between any proposed solutions is not an easy task,
understanding the intrinsic differences between the fundamental aims of each re-
search branch has unassailable value. This information can guide researchers to
merging different approaches into a widely accepted solution.

Such a problem that has been studied by different research branches is detect-
ing the transportation mode of a user. The different approaches are provided by
the following research areas: 1) Location Based Services (LBS), which aims at de-
tecting how a user is travelling as close to real-time as possible in order to provide
useful information to the user (e.g., alerting the user when she should start walk-
ing towards the bus station in order to be on time for work - Prelipcean, Schmid,
& Shirabe, 2015 -, or informing the user about the real time location of relevant
buses - Reddy et al., 2010), 2) Transportation Science (TSc), which aims at gen-
erating reliable statistics on what transportation means the user employs when
she performs her daily activities and chores for generating activity-travel diaries
(Axhausen, Schönfelder, Wolf, Oliveira, & Samaga, 2003; Stopher, FitzGerald, &
Zhang, 2008; Prelipcean, Gidófalvi, & Susilo, 2014, 2015), and 3) Human Geog-
raphy (HG), which aims at enriching a trajectory with domain-specific semantics
(e.g., detecting when a boat is fishing - Rocha, Oliveira, Alvares, Bogorny, &
Times, 2010). The scope of the aforementioned research areas is considerably
broader than transportation mode detection, and, as such, this paper does not
attempt to provide definitions for each field, but only documents the solutions
regarding transportation mode detection that originate in the mentioned fields.

While it is clear that different (partial) solutions have been studied and pro-
posed by each of these fields, it is critical to understand the scope of each field. In
LBS, the urgency of the response takes precedence over the correct segmentation
of a trajectory since the focus is on providing answers to the question “Given a
schema of transportation modes, how is a user travelling now?”, and if an algo-
rithm answers this question correctly 9 out of 10 times, it can report a precision
of 90%. It is important to note that the question is answered every time a new
location is received by a positioning device (e.g., GPS receiver). In TSc, the cor-
rect segmentation of a trajectory takes precedence over the urgency of response
(which, in most cases, is ignored) since the focus is on providing answers to the
question “Given a schema of transportation modes, how were users travelling dur-
ing a defined period?”, which usually implies that a segmentation algorithm can
holistically process the trajectory and does not need to take into account an incom-
ing stream of locations. In HG, the focus is on segmenting a trajectory into parts
that can be semantically enriched and it is common to first segment the trajecto-
ries into segments where the object is stationary or moving. Since the focus is on
semantically enriching a trajectory, there is no annotated dataset used to validate
the stationary / moving segmentation and the ulterior semantic enrichment.

Since most of the research on transportation mode detection done by each
of the fields continues the previous research performed in its own field, there is
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room left for improvement by analyzing whether solutions from different fields
can complement one another, i.e., studying “fused” solutions. The aim of this
paper is to enable the development of “fused” solutions by identifying the research
gaps that can be filled by future research by proposing: 1) widely accepted error
measures that are meaningful for LBS, TSc and HG, 2) methods that are robust
to new datasets and are not prone to overfitting, and 3) a benchmark dataset that
is useful for validating the performance of proposed methods.

While previous literature review papers also analyze transportation mode de-
tection (Shen & Stopher, 2014; Gong, Morikawa, Yamamoto, & Sato, 2014), the
papers only focus on transportation mode detection for automatic travel diary
generation, i.e., TSc’s aim, and do not take into account the variety of solutions
available from other disciplines.

The remainder of the paper is organized as follows. Section 2 presents and
discusses the different disciplines and their specifics. Section 3 summarizes the
main differences and similarities between the main approaches. Section 4 presents
the gaps in research and future research directions. Finally, Section 5 concludes.

2 Mode detection - main body of research

This section presents the differences between the current paper and other re-
view papers, describes how the main body of reviewed literature was chosen, and
overviews the body of literature. For a multi-dimensional summary of the body of
literature, we direct the reader towards Table 6 in the Appendix.

2.1 Differences between the current review and other reviews

Two recent review papers have included transportation mode detection but only
as part of a broad overview on generating travel diaries from GPS data (Shen
& Stopher, 2014; Gong et al., 2014). The automatic generation of travel diaries
is studied within the context of TSc because of two main factors: the utility of
data collected / derived from such diaries (Prelipcean, Gidófalvi, & Susilo, 2015;
Drchal, Certicky, & Jakob, 2015) and the decreasing response rate of respondents
to classical travel diary collection methods (Ogle, Guensler, & Elango, 2005). In
comparison, the current paper does not investigate TSc solutions only, but rather
analyzes the problem of transportation mode detection in multiple research fields.

Shen and Stopher (2014) offer a good overview of what methods are used in
TSc, but only centralize the precisions of each method as declared by its authors
and do not analyze how the precision was computed or its implications. The
authors also include important details such as what was the ground truth and
which attributes were used in each method. In comparison, the current paper also
investigates the implications of the declared precisions and how the precision is
computed. Furthermore, the current paper investigates the relationship between
the solutions offered by fields that include TSc but are not limited to TSc.
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Table 1: An overview of the generic question interpretation, together with the
interpretation’s implications, for each studied discipline

Generic
question

Given a schema of transportation modes, how does the user

travel?

Fields LBS TSc HG

Question
Interpretation

Given a schema of
transportation
modes, how is a
user travelling
now?

Given a schema of
transportation modes,
how were users
travelling during a
defined period?

How can a trajectory
be segmented into
parts that can be
enriched with domain
specific semantics?

Answer
promptness

Real-time Post-collection Post-collection

Types of
considered
entities

Raw entities, i.e.,
GPS points,
windows of
accelerometer
readings

Aggregated entities,
i.e., same mode
triplegs

Aggregated entities,
i.e., segments of
movement and
stationarity

User benefits Direct (tailored for
the user)

Indirect (for groups of
users)

Indirect (general
knowledge)

Gong et al. (2014) summarize methodologies used for trip and transportation
segmentation by analyzing the methods previously used in TSc and the used data
sets. The current paper compares different research fields and also discusses the
used datasets in terms of availability / promptness of response, thus offering more
insights into how the data are useful and whether the benefits provided by using
the data outweigh the latency and storage issues that accompany the data use.

Previous literature reviews have a focused approach to mode detection within
TSc. The current paper explores the benefits and drawbacks of the major dis-
ciplines that provides solutions for mode detection, and presents possible future
directions that could combine the knowledge gained from each discipline.

2.2 An overview of chosen literature

The chosen papers are either well established representatives of their fields (e.g.,
Zheng, Chen, Li, Xie, & Ma, 2010 for LBS, Wolf, 2000 for Transportation Science,
and Alvares et al., 2007 for Human Geography), study the latest research trends or
contain similarities with papers from the other disciplines. However, it is important
to note that the grouping of papers in the three disciplines does not imply that
the authors’ main area of research is that of the proposed discipline, or that the
papers were published in a journal that only caters for the proposed discipline, but
rather that the applications of the paper fit the interpretation of the transportation
mode detection problem of the proposed discipline. An overview of the studied
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Figure 1: The differences between the approaches employed for transporta-
tion mode detection by the three studied disciplines. LBS focuses on under-
standing the transportation mode in real-time, TSc focuses on measuring the
daily travel patterns of individuals or groups of individuals, and HG focuses
on enriching a trajectory by adding domain-specific semantics.The dimen-
sions along which the different disciplines differ substantially are visualized
using a cube-display inspired by MacEachren, 1995.

disciplines, together with the main differences between them that constitute the
discussions in the following sections, can be seen in Table 1 and in Figure 1.

The body of literature related to LBS contains those studies that focus on
detecting the transportation mode of a user as close to real time as possible by
relying mostly on data provided by GPS receivers (Stenneth, Wolfson, Yu, & Xu,
2011; Biljecki, Hugo, & van Oosterom, 2013), the accelerometer sensor (Hemminki,
Nurmi, & Tarkoma, 2013; Yu, Lin, Yu, Chang, & Wang, 2014) or a combination
of the two (Reddy et al., 2010; Manzoni, Maniloff, Kloeckl, & Ratti, 2010; Shah,
Wan, Lu, & Nachman, 2014; Prelipcean et al., 2014).

The body of literature related to TSc contains studies that focus on automating
the generation of travel diaries, which includes the task of segmenting a trajectory
into same mode segments, i.e., triplegs (Axhausen et al., 2003; Wolf, 2000; Stopher
et al., 2008). These studies employ similar three step approaches that segment
trajectories into trips, split trips into triplegs, and classify triplegs.

The body of literature related to HG contains studies that deal with the broad
task of enriching a trajectory with domain-specific semantics, which first identifies
when an user is moving or stationary (Alvares et al., 2007; Palma, Bogorny, Kui-
jpers, & Alvares, 2008; Rocha et al., 2010). This task coincides with the TSc trip
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Table 2: Overview of the main three LBS approaches. The main classification
methods are Decision Trees (DT), Random Forests (RF), Support Vector Machine
(SVM) and Discrete Hidden Markov Model (DHMM). The highest number of
modes is obtained by the approaches that fuse GPS with accelerometer data. The
references for the maximum number of considered modes, as well as the maximum
precision correspond to the ones highlighted in Appendix A.

Sensors used Acc. GPS GPS + Acc.

Accuracy entity Sliding Window GPS point GPS point

Classif. method DT, SVM RF DT, RF, DHMM

Max # modes 7 modes 6 modes 9 modes

Max precision
92.5% 92.8% 94.4%

(5 modes) (6 modes) (9 modes)

Auxiliary data No Yes No

Task Given a schema of transportation modes, how is a user travel-
ling now?

segmentation task, which precedes the tripleg detection task.

2.3 Location Based Services

The predominant transportation mode detection version for LBS is “on-demand”
mode detection (also known as online processing), where an algorithm has to
provide the current transportation mode of the user whenever asked. Different “on-
demand” transportation mode detection methods are, as mentioned previously,
focused on obtaining solutions as close to real-time as possible, with a low footprint
on battery consumption.

As there are different types of sensors that can provide data suitable for trans-
portation mode detection, researchers have studied the following sensors: GPS
receiver (Stenneth et al., 2011), accelerometer reader (Hemminki et al., 2013; Yu
et al., 2014) and the two sensors combined (Reddy et al., 2010; Manzoni et al.,
2010; Shah et al., 2014; Prelipcean et al., 2014). The main LBS specific approaches
are summarized in Table 2.

2.3.1 Accelerometer-only studies

The studies that use only accelerometer data are oriented towards battery savings
and compute features such as variance, wavelet entropy, peak frequency on slid-
ing or tumbling windows that are labeled by the users. The used measures and
dimensions are similar to those studied and presented by Figo, Diniz, Ferreira, &
Cardoso, 2010. Notably, this type of low-battery consumption methods are also
provided by the major phone operating systems via different Application Program-
ing Interfaces (APIs), such as Google, 2015, whose ActivityRecognition API can
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detect whether the device is on a user that is travelling by car, walking, running,
bicycling or stationary, and Apple, 2015, whose CMMotionActivityManager API
can detect if the user is walking, running, in a vehicle, or stationary. Unfortunately,
there are no publicly available documents regarding the precision of the aforemen-
tioned APIs. Research that focused explicitly on accelerometer only transportation
mode detection report a precision of 70% for six transportation modes using de-
cision tree classifiers (Wang, Chen, & Ma, 2010), 80.1% precision and 82.1% recall
for seven transportation modes using AdaBoost together with Decision Tree clas-
sifiers (Hemminki et al., 2013) and 92.5% precision for five transportation modes
using a Support Vector Machine classifier (Yu et al., 2014). While the data size
available for each research group varies (150 hours from 16 users for Hemminki
et al., 2013, 12 hours from 7 users for Wang et al., 2010 and an afternoon from
4 users for Yu et al., 2014), the precision and recall values are computed on ac-
celerometer samples, which are labeled periods of a predefined duration where one
accelerometer reading can be found either in one period only (tumbling windows)
or in multiple adjacent periods (sliding windows) – (8 seconds for Wang et al.,
2010, 1.2 seconds for Hemminki et al., 2013, and 10 seconds for Yu et al., 2014)
associated to one activity. The validation of the proposed methods is done by
allocating a percentage of the collected data set for testing purposes and training
on the remaining set (Wang et al., 2010; Yu et al., 2014), or by using a leave one
user out cross-validation (Hemminki et al., 2013).

The advantage of using an accelerometer only approach to transportation mode
detection lies in the promptness of response and battery efficiency of the method.
However, the main disadvantage is that it can not be reused as-it-is for other pur-
poses where the spatial position of the users is needed. While, if used continuously
during a time frame, it offers a good description of the temporal component of
the user’s activities, to offer the same level of description detail for the spatial
component, it should make use of positioning technologies.

2.3.2 GPS-only studies

There are relatively few studies that try to estimate the transportation mode
relying solely on GPS-derived features in real time, mostly because these features
are usually not enough to distinguish between a great number of classes. To
avoid this pitfall, research augments the mode detection with proximity to objects
in relevant geographical datasets (e.g., transportation stations or transportation
network), which is problematic from the point of view of scalability and usability,
since the datasets are stored on a server. In general, these methods are inefficient in
terms of battery consumption since there is no duty-cycling performed to leverage
how much battery is consumed by the GPS receiver due to the lack of accelerometer
use. This is detrimental because the battery consumption of a unsuccessful location
request inside a building (where the user / phone is stationary, i.e., a large fraction
of the time - Klepeis et al. 1996) is significantly higher than the cost of a location
request outdoors (Prelipcean et al., 2014).
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Stenneth et al., 2011 use data provided by the GPS receiver to distinguish
between six transportation modes (walk, bus, driving, train, stationarity, bike).
The GPS locations are sampled every 15 seconds, but the window used in the
classification is formed of 30 seconds, which is needed to compute the used feature
set. The authors use a transportation network GIS dataset together with the
expected real time locations of buses (according to simulations based on the travel
history of buses) obtained as a live feed (it is not specified whether the feed is
a Generalized Transit Feed). The features used in the classification were: (1)
average accuracy of GPS readings, (2) average speed, (3) average heading change,
(4) average acceleration, (5) average bus closeness combined with candidate bus
closeness, (6) rail line trajectory closeness, and (7) bus stop closeness rate. Since
all these are not lightweight operations on average sized datasets, the processing
cannot be performed by clients and the GPS points have to be sent to a central
server, which in turns answers with a probable mode (when available). The authors
find that a Random Forest (an ensemble learning method that aggregates the
classification of multiple Decision Trees based on a voting scheme, where each tree
gives a classification for a data point based on the set of data features revealed to
the tree - Breiman, 2001) has the best performance metrics with a 92.8% precision
and 92.9% recall. While the necessity of a central server that performs these
operations is crippling in terms of availability for a large number of requests and
the responses are not immediate due to the transportation feed (the bus positions
are updated every 20-30 seconds), the authors obtain a good precision and recall
even though the considered modes exhibit similar characteristics (e.g., speed for
buses and cars).

Another study that relies exclusively on GPS data and GIS datasets is pre-
sented in Das, Ronald, & Winter, 2014, where the authors propose a method to
detect transfer points. The methodology relies on clustering nearby points using
a Density-Based Spatial Clustering of Application with Noise (DBSCAN) with an
adaptive search radius and then classifying the clusters into transfer points based
on the proximity to existing POIs (bus, train or tram stops) and the dwell time
of the cluster (i.e., the time period between the earliest clustered point and the
latest clustered point). The experiments were run in Melbourne on 29 valid tra-
jectories collected by 4 users, where the trajectories had the following constraints:
a minimum distance of 5 km and a minimum duration of 30 minutes. The authors
compare the proposed approach with the traditional walking-based one in two ex-
periments and report that the proposed one outperforms the traditional one, but
given the dataset size it is not a definite result since more information is needed for
the validation. Similarly to the previous GIS dataset dependent approaches, the
applicability of this approach is dictated by the availability of the dataset. Also,
the results of the test are inconclusive due to the modest dataset used for testing.

In summary, the studies that rely only on GPS-provided sensor data make use
of the not-widely available GIS datasets and adds an extra layer of complexity
on the server side. The use of GIS datasets is a downside from the usability
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aspect due to the well-known non-standard way of storing different attributes
throughout different dataset sources (e.g., using transportation lines from OSM
and a proprietary source), where overlapping entries cannot be easily filtered out.

2.3.3 GPS fused with accelerometer studies

In general, fusing GPS readings together with accelerometer derived features proved
to be of great help in terms of precision gain (Reddy et al., 2010). The main advan-
tages are the duty cycling of the GPS sensor based on the accelerometer readings
to minimize battery consumption, and the availability of these sensors’ readings di-
rectly on the client, which contrasts the GIS-dataset dependent approaches, where
several extra steps have to be taken for a prediction (Prelipcean et al., 2014).

These methods collect all the accelerometer readings in between every two
consecutive GPS locations (except Shah et al., 2014) and then compute features
similar to those proposed by Figo et al., 2010, such as: time domain features (mean,
standard deviation, mean crossing rate) and frequency domain features (dominant
frequency, sub-band energy, discrete Fourier transform energy coefficients), which
are then used as features for the applied machine learning methods (Reddy et
al., 2010; Prelipcean et al., 2014). The features that are derived from the GPS
readings are usually average heading change, average speed, average accuracy of
a location, etc. These studies differentiate either between five different travel
modes (still, walk, run, bike, and motor) with a 91.3% precision and a 91.3%
recall (Reddy et al., 2010), between seven different travel modes (car, train, walk,
subway, bus, bike, and ferry) with a 90.8% precision and 90.9% recall (Prelipcean
et al., 2014), or between three different motorized travel modes (car, bus, and
train) with a precision of 90% (Shah et al., 2014). The sampling method used for
machine learning training is usually the 10-fold cross validation method (Reddy
et al., 2010; Prelipcean et al., 2014; Manzoni et al., 2010), and Reddy et al.,
2010 also discusses the implications of using a leave-one-user out cross validation
technique to show that the trained classifiers can be used for making inferences
for new users. The authors use different types of classifiers such as a Decision
Tree in the initial stage followed by a post processing Discrete Hidden Markov
Model based on a transition probability matrix (Reddy et al., 2010), a Random
Forest classifier (Prelipcean et al., 2014), a Decision Tree (Manzoni et al., 2010),
or a Markov Model Smoother followed by a Decision Tree (Shah et al., 2014). The
sampling rates for the collected data vary: 1 location and 32 accelerometer readings
per second (Reddy et al., 2010), 1 location every 50 meters and 5 accelerometer
readings per second (Prelipcean et al., 2014), 1 location and 25 accelerometer
readings per second (Manzoni et al., 2010), and 1 location every 5 seconds and 100
accelerometer readings per second (Shah et al., 2014). The authors do not explain
the reasons behind the chosen collection sampling rates - the reader is directed
towards Prelipcean et al., 2014 for a deeper discussion on different data collection
sampling strategies. The size of the datasets and the number of users that collected
data also vary: 16 users collecting data for 15 minutes per transportation mode
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Table 3: Overview of the three main TSc approaches. The main employed
classification methods are Subjective Rule Determination, Decision Trees (DT) and
Random Forests (RF). The highest number of modes is obtained by the approaches
that rely on fuzzy logic. The references for the maximum number of considered
modes, as well as the maximum precision correspond to the ones highlighted in
Appendix A.

Classif. type Fuzzy Logic Rule-based Heuristics ML

Classif. methods
Subjective Rule Subjective Rule DT, RF

Determination Determination

Max. # modes 10 modes 6 modes 6 modes

Max. precision
91.6% 95% 85.6%

(10 modes) (5 modes) (6 modes)

Auxiliary data Yes Yes Yes

Task Given a schema of transportation modes, how were users travel-
ling during a defined period?

(Reddy et al., 2010), 11 users collecting data for 10 days (Prelipcean et al., 2014),
or 15 users collecting 129 trips (Shah et al., 2014). With the exception of Shah
et al., 2014, who use a generalized transit feed together with a street network for
inferring the mode, all the methods rely solely on data readily available on the
device. While the intention of the aforementioned approaches is real time travel
mode detection, the algorithms are trained and tested after the data are collected
and labeled, and are not re-tested on new users in real time, and therefore the
generality of the obtained models is not investigated.

The LBS research reports the algorithms’ performance via point-based preci-
sion and recall (i.e., per measured entity), which is sufficient if no further infor-
mation needs to be derived from the measurements, such as the time spent by a
user while traveling via a certain mode, the traveled distance via a mode, or the
number of mode changes per trip. These methods put a higher emphasis on pro-
viding prompt and correct inferences for each location than on accurate aggregate
statistics on same-mode travel segments.

2.4 Transportation Science

TSc has continuously pursued the study of how people travel and what impact
do modifications on the infrastructure have on people. One of the most common
methods used to gather this type of information is via travel diaries, where users
declare how and why they are traveling to their destinations during a certain time
period (usually of one day). The classical approaches relied on users filling up
paper diaries, having phone interviews, or declaring how they traveled via web
forms, which have two main downsides: the participants are under-reporting their
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trips (Bricka & Bhat, 2006; Wolf, Oliveira, & Thompson, 2003), and the response
rate is decreasing (Ogle et al., 2005; Zimowski, Tourangeau, Ghadialy, & Pedlow,
1997). As a solution to these problems, transportation scientists tried to automate
parts of these diaries.

Historically, among the first authors to carry out the automation of activity-
travel diaries were Wolf, 2000, Schönfelder, Axhausen, Antille, & Bierlaire, 2002
and Axhausen et al., 2003, which collected data using GPS receivers mounted on
vehicles. One of the first to move away from in-vehicle GPS devices to hand-held
GPS receivers (accompanied by a PDA, all of which weighted approximately 2
kg) was Draijer, Kalfs, & Perdok, 2000 who studied the burden and bias imposed
by these type of devices. These papers are mostly mentioned for historic reasons,
since they constitute the launching points of the science that eventually ended up
studying transportation mode detection as part of its efforts, which is of interest
for the present paper.

One of the studies that proposes the methodology most widely used in TSc
for segmenting trips into triplegs is Chung & Shalaby, 2005, which (besides noise
filtering) contains two main pre-processing tasks prior to mode detection: trip
detection, which is based on a heuristic rule that uses a threshold of 120 seconds
dwell time between consecutive locations to detect trips, and tripleg identification,
which is based on Mode Changing Points (MCPs). Unique to this study is the
initial definition of MCPs (later branded by Tsui & Shalaby, 2006 as Mode Transfer
Points – MTPs) and the set of rules used to define these points. A point is a MTP
if: 1) the speed difference from the previous point’s speed is more than 10 km/h
and the time difference from the previous point is more than 5 seconds, or 2) the
distance to its previous point is more than 150 meters and the speed difference
from the previous point’s speed is more than 10 km/h. As a continuation of this
study, Tsui & Shalaby, 2006 formally define a Mode Transfer Point (MTP) as the
point where travelers change from one transportation mode to another, and declare
three types of MTPs: a start-of-walk point (SOW - the traveler changes from a
mode to walking), an end-of-walk point (EOW - the traveler changes from walking
to a new mode) and an end of gap point (EOG - the first point that occurs after a
large time gap without GPS data). The detection of MTPs has become an integral
part of most research performed in TSc as the most common pre-processing step
of the transportation mode inference (Stopher et al., 2008; Schüssler & Axhausen,
2009; Schüssler, Montini, & Dobler, 2011). Another widely used approach for
segmentation is the one proposed by Zheng et al., 2010, which relies on the same
assumption as Tsui & Shalaby, 2006, namely that a traveler walks when changing
transportation modes, and detects walking segments by using a loose upper bound
for velocity and acceleration (2.5 m/s for velocity, and 1.5 m/s2 for acceleration).

When analyzing the travel modes, there is usually a baseline for detected modes
such as walking, bicycling and motorized (Chung & Shalaby, 2005; Tsui & Shalaby,
2006; Stopher et al., 2008; Schüssler & Axhausen, 2009; Schüssler et al., 2011;
Montini, Rieser-Schüssler, & Axhausen, 2014; Bohte & Maat, 2009; Biljecki et al.,
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2013; Zheng et al., 2010; Rasmussen, Ingvardson, Halldórsdóttir, & Nielsen, 2013,
2015; Prelipcean et al., 2014; Prelipcean, Gidófalvi, & Susilo, 2016), but some
research goes a step further and classifies the motorized into car, train, and public
transportation (Stopher et al., 2008; Schüssler & Axhausen, 2009; Schüssler et al.,
2011; Bohte & Maat, 2009; Biljecki et al., 2013; Rasmussen et al., 2015; Prelipcean
et al., 2014, 2016). Of these papers, Biljecki et al., 2013 provides the most detailed
classification scheme that includes 10 modes: walking, bicycling, car, ferry boat,
sail boat, train, subway, bus, tram and flight.

In the body of research on mode detection in TSc, there seems to be a prefer-
ence for inferring travel mode by using mostly subjective methods such as Fuzzy
Logic (Tsui & Shalaby, 2006; Schüssler & Axhausen, 2009; Schüssler et al., 2011;
Rasmussen et al., 2015) or any variation of fuzzy logic approaches such as methods
based on Membership Functions (Biljecki et al., 2013), and Rule Based Heuristics
(Chung & Shalaby, 2005; Bohte & Maat, 2009). Some methods also rely on ob-
jective methods such as Decision Trees (Zheng et al., 2010) or Random Forests
(Montini et al., 2014), but these approaches constitute the minority. The most
widely used features in mode detection are derived from segments, e.g., duration
of tripleg, average speed of tripleg, median speed, 95th percentile speed, or proxim-
ity to road network segments or transportation stations. Most research on mode
detection in TSc relies on external GIS datasets. The reported precisions vary:
91.7% precision for 4 travel modes (Chung & Shalaby, 2005), 94% precision for 7
travel modes (Tsui & Shalaby, 2006), 95% precision for 5 modes (Stopher et al.,
2008), 83% precision for 5 modes (Schüssler et al., 2011), 85.8% precision for 7
modes, 70% precision for 6 modes (Bohte & Maat, 2009), 91.6% precision for 10
modes (Biljecki et al., 2013), 84.6% precision for 5 modes (Rasmussen et al., 2015),
and 75.3% precision and 73.2% recall for 9 modes (Prelipcean et al., 2016).

Since scientists focused on different methods for automatic trajectory segmen-
tation and mode detection, they reported the performance of the proposed algo-
rithms using traditional metrics that do not cover all dimensions of error that are
associated with dealing with continuous intervals and with the error propagation
due to multi-step approaches (Prelipcean et al., 2016).

2.5 Human Geography

As Parent et al. (2013) noted, trajectory segmentation depends on the application
of the services for which it is performed. While the output is a trajectory split into
domain-specific semantic segments, one of the first steps in this process is splitting
a trajectory into segments when the object is stationary, i.e., stops, and segments
where the object is moving, i.e., moves. This type of trajectory segmentation is
known as stops and moves. The main HG approaches are presented in Table 4.

The “stops and moves” segmentation methodology was initially proposed by
Alvares et al. (2007), where the authors use a heuristic approach and check if
a trajectory intersects a polygon associated with a POI (where the polygon is
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Table 4: Overview of the two main HG approaches. These approaches rely on
different heuristics and the precision is based on human interpretation.

Approach Heuristics Interactive Exploration

Thresholds

Dwell time Yes Yes

Speed Yes Not specified

POI proximity Yes Yes

Direction change Yes Not specified

Task How can a trajectory be segmented into parts that can be en-
riched with domain specific semantics?

built as a buffer around a POI) for a minimal threshold duration. Whenever that
happens, the subtrajectory for the duration of the intersection is labeled as a stop
and the subtrajectory leading to it and the one following it are labeled as moves.
The authors only show examples on how the algorithm is useful, but the algorithm
is not tested on a real-world data set. New methods that rely on the “stops and
moves” approach have been developed and tested (Palma et al., 2008; Rocha et al.,
2010), but the methods either report only on identified stops and not on missed
stops or falsely identified stops (Palma et al., 2008), or are tested on moving
objects datasets that have a distinguishable aspect, which is known apriori (e.g.,
the fishing boat dataset studied by Rocha et al. (2010), where the authors rely on
a minimal direction change threshold to detect stops, which is difficult to use on
other types of moving objects, such as land vehicles). Krumm and Horvitz (2006)
use a similar approach for segmenting trajectories collected by different vehicles
into trips. They relied on a temporal threshold accompanied by a speed threshold,
and identified 7355 trips; however, no ground truth data was provided for any
validation, and the approach is tailored to work for GPS data collected by cars.
Even though the “stops and moves” is rationally sound, the lack of reports on the
performance of this approach makes it difficult to compare with other approaches
that segment trajectories. Furthermore, the approach only differentiates between
stationary and non-stationary periods, which is insufficient for more complex tasks
(e.g., segmenting a trajectory into same transportation-mode segments). Finally,
the approaches that rely on an existing POI dataset are restricted to places where
such datasets are available.

Other approaches involve proposing exploratory analysis frameworks (Andrienko,
Andrienko, & Wrobel, 2007; Yan, Chakraborty, Parent, Spaccapietra, & Aberer,
2011), which can then be used to identify temporal and / or spatial threshold
values for segmenting trajectories into stops and moves. However, this approach
can be thought of complementary to the “stop and moves” one, thus inheriting its
shortcomings. Furthermore, due to its exploratory aspect, the approach relies on
human interaction and assumes that the analyst can find optimal parameter values
given her implicitly assumed correct notion of ground truth, which diminishes the
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ability to automate the task.
Xie, Deng, and Zhou (2009) define a trajectory semantic join and introduce

two measures to identify parts of a trajectory semantically enriched by a set of
activities associated to a POI, namely influence and influence direction. The first
measure is used to generate segments as sequences of points that share the closest
POI, and the second measure is used to choose the most probable activity from
the activity set associated to its closest POI by using a POI activity mapping
set. The POI activity mapping set contains the minimum and maximum elapsed
time for an activity that happens at a POI. The authors simulate trajectories that
contain five modes (driving, walking, short stop, stop and long stop) and perform
the semantic join, but the purpose of the simulation is to measure the algorithm’s
efficiency rather than assessing the correctness of the semantic join.

The HG type of segmentation is useful for identifying stationary and movement
parts of a trajectory, and could be used for detecting transportation modes if one
of the following hypotheses holds: 1) any two consecutive movement periods with
distinct modes are separated by a stop period, in which case the task is reduced
to classifying a movement period into its travel mode, or 2) a movement period
can be semantically enriched by using apriori knowledge specific to transportation
detection derived from proximity to relevant geographic datasets. It is important
to note that, in the absence of ground truth, the classification depends on the
subjective interpretation of the expert that finely tunes the parameters of the
classification to her expectation. Due to the similarity between the strategies used
by TSc and HG for segmenting a trajectory, this paper considers any HG study that
specifically focuses on travel mode detection as a TSc study. However, contrasting
LBS and TSc, where the data are collected are labeled according to a predefined
scheme, the HG approach only depends on the available auxiliary datasets and the
knowledge of the interpretation expert. Finally, the HG approach is limited by the
expert’s prowess, as well as by other factors that can affect her decision making
process, such as: fatigue or incomprehensibility induced by massive data volumes.

3 The main differences between disciplines

Since each of the three disciplines have an own interpretation of the generic trans-
portation mode detection question (see Table 1), it is important to understand the
main dimensions along which they differ the most. To facilitate the understanding
of what follows, the discussion is accompanied by Figure 1, which is inspired by
the “cartographic visualization cube” proposed by MacEachren, 1995.

3.1 Data used in the mode detection classification

One of the dimensions among which the disciplines vary considerably is the “data
types and data processing” (the length of the cube in Figure 1) dimension. One
end of the dimension contains only data that facilitates close to real-time trans-
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portation mode detection, which is directly linked to LBS. The opposite end of
the dimension contains external data that are used in post-processing stages for
transportation mode detection (e.g., road networks, POIs, etc.), which is directly
linked to TSc and HG.

Since the priority of the LBS discipline is to respond to the requests in real-time
(or as close to real-time as possible), most approaches rely on the data that are
readily available on the devices, i.e., supplied by sensors, e.g. GPS (Stenneth et al.,
2011), accelerometer (Hemminki et al., 2013; Yu et al., 2014) or both (Prelipcean et
al., 2014; Shah et al., 2014). While some approaches have an extra penalty for the
promptness of the classification because they rely on transit feeds, which are man-
aged by 3rd parties, (Stenneth et al., 2011; Shah et al., 2014), most LBS approaches
classify either every GPS location into its transportation mode (Prelipcean et al.,
2014; Reddy et al., 2010), the penalty being the sampling frequency, or every win-
dow of accelerometer readings (Hemminki et al., 2013; Yu et al., 2014), the penalty
being the size of the window.

Contrasting LBS, neither TSc or HG attempt to classify each sensor reading,
but perform a bulk classification on a whole trajectory. Since there are no prompt-
ness constraints, TSc and HG approaches rely on external data sources such as
road network datasets (Chung & Shalaby, 2005; Tsui & Shalaby, 2006; Stopher
et al., 2008; Biljecki et al., 2013; Rasmussen et al., 2013, 2015) or POI buildings
datasets (Alvares et al., 2007; Palma et al., 2008).

A direct consequence of the difference in focus between disciplines is the types
of devices that are used to collect data and / or perform the mode detection. While
there is a prevalence for using smartphones in LBS (Manzoni et al., 2010; Reddy et
al., 2010; Wang et al., 2010; Hemminki et al., 2013; Montini et al., 2014; Prelipcean
et al., 2014; Shah et al., 2014; Yu et al., 2014), TSc and HG mostly use dedicated
devices such as the Geostats Geologger (Chung & Shalaby, 2005; Tsui & Shalaby,
2006) or other types of dedicated devices (Alvares et al., 2007; Palma et al., 2008;
Stopher et al., 2008; Bohte & Maat, 2009; Schönfelder et al., 2002; Rocha et al.,
2010; Zheng et al., 2010; Biljecki et al., 2013; Rasmussen et al., 2013, 2015) with a
few exceptions that use smartphones (Schüssler et al., 2011; Montini et al., 2014).
This is an important distinction because, with a few exceptions (Stenneth et al.,
2011; Shah et al., 2014), the studies that collect data using smartphones have a
thick-client architecture, in which the client performs most inference operations and
the server acts only as a storage backup, which contrasts those that use dedicated
devices, which use a thin-client architecture, in which the server performs inference
operations in addition to the data management. These discussions are summarized
in the first row of Table 5.

3.2 Types of entities that are studied by each discipline

Another dimension among which these fields vary is the measured entity, i.e.,
the type of entity used for assessing the performance of algorithms (height of the
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Table 5: The differences induced by the three proposed dimensions. Most LBS
studies perform the transportation classification on smartphones (SP) in real time,
while TSc and HG collect data with dedicated devices (DD) and perform the
transportation classification on a central server.

Dimension Dimension implications LBS TSc HG

Data

Answer Real-time Post Post

Device SP DD DD

Client Thick Thin Thin

Entity

Type Location Tripleg Segment

P&R calculation Direct Multi-step Subjective

P&R disadvantages Non holistic Triplegs given Manual

Context
Classif. Robust Subjective Subjective

User benefit Short-term Long-term Long-term

Classif. validation Yes Partial No

cube in Figure 1). LBS measures precision and recall for every labeled raw en-
tity, which is a GPS location (Stenneth et al., 2011), a window of accelerometer
readings (Hemminki et al., 2013; Yu et al., 2014), or a GPS location fused with
accelerometer derived features and summaries (Prelipcean et al., 2014). HG al-
lows for subjective interpretation of the semantics attached to a trajectory, which
is usually independent from ground truth data. TSc measures precision and re-
call (the recall is seldom disseminated in TSc) on segments that are obtained via
different heuristic rules such as MTP (Tsui & Shalaby, 2006) or walk-segment de-
tection (Zheng et al., 2010). As a consequence, the entities used for measuring the
performance of each method vary between disciplines, the performance measures
themselves are incompatible (e.g., a 90% precision in LBS does not translate to a
90% precision in TSc).

In LBS, the errors are easy to compute and understand, i.e., given the en-
tities (GPS locations or accelerometer windows) that need to be classified, the
performance measures are precision (percentage of the inferences that were cor-
rect, per mode) and recall (percentage of the total population that was inferred,
per mode). This resonates with the promptness penalty that is present in LBS,
where the inference is made in real-time. However, since the precision and recall
are computed per entity, it does not directly capture information at a segment
level such as over- or under-segmentation or segment matching, which are critical
in TSc. The variation of the precision and recall values reported by the authors
in LBS is more likely to be due to the classification scheme (i.e., tax complexity),
the data features and the size of the learning corpus rather than due to the type of
machine learning used (Banko & Brill, 2001 showed the size of the learning corpus
of a machine learning algorithm to be more important than the type of machine
learning algorithm).
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In TSc, the errors are difficult to understand due to the vagueness induced by
the multi-step approach that generates segments: segment trajectories into trips,
segment trips into triplegs, and infer the travel mode of a segment. One of the few
papers that provides a thorough definition of precision, recall and how the values
are computed is written by Zheng et al., 2010. The authors define the following
measures for the performance transportation mode detection: accuracy by segment
computed as the number of segments correctly predicted divided by the total
number of segments, and accuracy by distance computed as the distance covered
by the correctly inferred segments divided by the total traveled distance. Similarly,
the authors define precision and recall values for MTP, and emphasize that even
though the recall has higher priority in this case, a balance between precision
and recall should be kept. Even though this approach is thorough in terms of
accuracy assessment, its output is discontinuous, the statistics are presented only
for the inferred segments matched to ground truth segments, and all errors are
treated as equal. However, the metrics proposed by Zheng et al., 2010 are not well
suited for travel diaries automation since they have been developed for Geolife (a
Location-Based Social Networking Service - Zheng, Xie, & Ma, 2009) while testing
the performance of different transportation mode detection solutions (Zheng, Liu,
Wang, & Xie, 2008). Most TSc research papers report on precision for the given
ground truth triplegs, as opposed to the inferred segments that are obtained via
detecting MTPs, which suggests that they are only valid for a 100% accurate
segmentation. For example, Schüssler et al., 2011 report a tripleg segmentation
precision of 68%, and then continue on with performing and reporting on mode
detection on the 100% accurate segments, as opposed to the 68% accurate ones.
Similarly, Biljecki et al., 2013 report that “the segments are not segmented exactly
at the same transitions points (so one should accept small differences here).”

The issue of error propagation in multi-step approaches, and how the precision
and recall values reported in LBS translate to triplegs are discussed at length in
Prelipcean et al., 2016, where a generic framework for measuring the transport
mode segmentation of trajectories is introduced. The main issue of disregarding
multi-step error propagation lies in the uncertainty of predicting how well any of
the proposed approaches can perform in new studies.

3.3 Breadth of the context in which the mode detection is performed

The dimension among which all disciplines vary the most is the breadth of context
(depth of the cube in Figure 1), which directly relates to the subject of each study.
LBS has a very focused context, which is inferring the transportation mode of a
user (usually a stand-alone operation). TSc has a broader application than LBS,
although it is also focused on a specific task, which is capturing how people travel,
which contains the task of detecting how users travel en route to their destinations.
HG has a very broad application that mostly segments the trajectories into stop
and move segments as a prerequisite to domain specific semantics enrichment (e.g.,
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understanding the effect of changes in the city’s infrastructure - Noland, 2003 -,
modeling the movements of fishing boats - Rocha et al., 2010 -, understanding why
and how people migrate in between regions - Hägerstrand, 1962 -, or understanding
decisions at an individual level - Hägerstrand, 1970).

The interpretation of each discipline of the mode detection question caters to
different application scenarios, which in turn propose solutions that have different
characteristics. The difference between disciplines is mainly governed by the time
frame of the case study and the number of required participants. Mode detection
is a task that relies on having a ground truth dataset that is usually obtained from
users annotating their traces. In LBS, the interest is on obtaining data over long
periods of time, in which case it is difficult to recruit users. Contrarily, most TSc
efforts that are geared towards the automation of travel diaries put more emphasis
on gathering data from a great number of users for a predefined period of time of
several days (similar to traditional activity-travel diaries - Prelipcean, Gidófalvi,
& Susilo, 2015) or more than one week (for research that also studies daily purpose
variability -Axhausen et al., 2003). Even though these constraints might not be
causal, there is a drastic difference between the methodology behind TSc mode
detection and LBS mode detection.

LBS employs mostly statistically robust machine learning methods (Xu & Man-
nor, 2012) that perform well on different datasets: 1) supervised learning methods
such as Decision Trees, Random Forests and Support Vector Machines, 2) boosted
classifiers such as AdaBoost, or 3) multi-layered approaches such as Decision Trees
followed by either a Discrete Hidden Markov Model, Rule-based Heuristics, or Sup-
port Vector Machines. TSc, on the contrary, uses highly empirical ad-hoc methods
such as: 1) Rule-based Heuristics, and 2) Fuzzy Logic. The use of Fuzzy Logic
has been both challenged (Elkan et al., 1994) and praised (Zadeh, 2008), and
while there is no general consensus in the scientific community whether Fuzzy
Logic should be used or not, there are problems with using Fuzzy Logic for mode
detection. First, the empirical approach for generating rules for mode detection
relies on the expert’s understanding of the available dimensions (usually limited
to a subset of the available dimensions). Second, empirical rule generation is not
guaranteed to take into account inter-dimension correlation. Finally, since the tra-
ditional methods uses human judgment to define the rules, any class addition to
the classification scheme is costly. Similarly, using machine learning methods has
drawbacks, most notable the dependance on large amounts of labeled data needed
to train classifiers (Banko & Brill, 2001; Zhu, Vondrick, Ramanan, & Fowlkes,
2012), the difficulty of dealing with imbalanced datasets (Van Hulse, Khoshgof-
taar, & Napolitano, 2007), and the difficulty of obtaining and interpreting the rules
learned by the algorithms (Andrews, Diederich, & Tickle, 1995; Krause, Perer, &
Bertini, 2016).

Furthermore, the distinction between the classification methods affects how the
models are validated, i.e., how well a model that is trained on a subset of the data
(resampled dataset) performs on the remaining unrevealed dataset. Most common
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methods are either k-fold validation – the original sample is randomly partitioned
into k sized subsamples, each of the sub-samples is used once as validation data
– or hold-out validation – the original sample is randomly partitioned into two
specified size samples, one of which is used for training the classifier, the other
for validation. In most TSc approaches that rely on Fuzzy Logic or Rule-based
Heuristic for mode detection, model validation is not mentioned since the dataset is
not resampled and is revealed to the experts that build the rules (Chung & Shalaby,
2005; Tsui & Shalaby, 2006; Stopher et al., 2008; Bohte & Maat, 2009; Schüssler
& Axhausen, 2009; Schüssler et al., 2011; Biljecki et al., 2013; Rasmussen et al.,
2013, 2015), which raises the issue of overfitting (Jin, Von Seelen, & Sendhoff,
1999; Hawkins, 2004), i.e., the model is susceptible to not performing well on
different datasets. Contrary to this, the approaches that employ classical machine
algorithms are using k-fold validation (Stenneth et al., 2011; Prelipcean et al.,
2014; Yu et al., 2014), hold-out validation (Zheng et al., 2008, 2010) or variations
of cross-validation such as leave one user out (Hemminki et al., 2013) or grouped
cross-validation (Montini et al., 2014).

The type of sampling used also indicates what is required from the classifier,
where LBS approaches intend to propose methods that can provide real-time infor-
mation to the user and can be used over long periods of time, and TSc approaches
intend to classify the data collected over the case study period of time, without
giving any output to a user. This raises also the issue of user benefit, where LBS
provides fresh and relevant information in real time that can be linked into a ser-
vice (e.g., informing users to avoid a congestion), and TSc provides information
that affects the users in the long time (e.g., the improvement of public transporta-
tion infrastructure due to the study of how groups of individuals move). These
discussions are summarized in the third row of Table 5.

4 Gaps in research and areas for future work

With regard to Figure 1, an “ideal focus line” can be defined as the convergence
for the LBS, TSc and HG approaches to provide an answer for the generic question
of mode detection (see Table 1). Considering the previous section, LBS performs
mode detection in real time at a point level, and TSc and HG perform mode
detection on bulk-trajectories at a segment level. An ideal solution would perform
mode detection in real-time, and the precision and recall values would be high
when computed for both point and segment entities. Because it is difficult to
define the breadth of context of an ideal scenario, the ideal line is not constrained
by it. Moving towards the ideal line poises several challenges.

The most difficult challenge is modeling both point and segment entities to
allow for the real-time broadcast of the detected mode for LBS, which can also be
used to obtain same-mode segments suitable for TSc and HG. While this might
not seem problematic given the approximately 90% precision reported by most
papers, an in-depth study (Prelipcean et al., 2016) reveals that using methods
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that classify locations into modes to form segments is accompanied by a precision
drop of approximately 40%. Furthermore, the error is computed as the percentage
of points correctly classified or as the percentage of segments correctly classified
without taking into account the spatial and temporal factors such as the length /
duration of a segment, or the distance / duration between two consecutive points,
i.e., all errors are treated as equal (Prelipcean et al., 2016). To gain a deeper insight
on how to overcome this challenge, scientists should report the performance of the
proposed methods in a frame that is common for both point and segment entities,
such as that proposed by Prelipcean et al., 2016, which could help researchers
identify the most promising approaches for mode detection.

The next challenge is related to data acquisition and it is two-fold: 1) identify
how to collect data from multiple users without (substantial) extra costs, and 2)
having a “benchmark” dataset, which is very diverse, accompanied by “bench-
mark” performance measures that all scientists can use to test their methods.
First, data collection can be achieved by using already developed seamless data
collection systems (such as the MEILI Mobility Collector - Prelipcean et al., 2014),
but reaching a large number of users is difficult without offering useful information
back to the users, e.g., reminding users to hurry up to catch a bus, or informing
users to change their most often used path to a place because of traffic congestion
(which is reminiscent of calm technology – Weiser & Brown, 1996, 1997). Second,
having a “benchmark” dataset such as the Geolife dataset (Zheng et al., 2008,
2009, 2010) collected from a great number of users travelling with different modes
is difficult because of the magnitude of the collection, the willingness of the users
to share their data, and the legal efforts behind making such a dataset available.
Similarly, the “benchmark” performance measures have to be robust and accepted
by the scientific community.

While it is not obvious how to develop solutions to overcome these challenges,
future research in mode detection could focus on any of the aforementioned pro-
posals to bring science closer to solving the issue of mode detection and to the
acceptance of such a solution.

5 Conclusion

This paper presents an in-depth analysis of the research that surrounds trans-
portation mode detection with an emphasis on how three of the major disciplines,
i.e., LBS, TSc, and HG, approach this task. The paper is structured in three main
parts that: provide an overview of the main body of literature specific to each
discipline, identify how solutions are different in between disciplines, and identify
the gaps in research that are good candidates for future work.

The first part of the paper identifies, for each discipline, both the seminal
work, and the most recent research approaches that were built on that work. This
part mentions the choice of body of literature, and presents an overview of the
research, which is a methodology comparison in terms of: employed methods,
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classification features, and number of identified modes. The second part of the
paper identifies three dimensions among which the studied disciplines vary greatly
due to their different interpretation of the generic transportation mode question,
i.e., the “data”, “context”, and “entities” dimensions. Each of these dimensions is
thoroughly analyzed while identifying strong and weak points for the approaches
proposed by each of the disciplines. The last part of the paper tries to establish
the “common ground” in between disciplines and propose a direction of research
that could constitute a meeting point in between disciplines, and identifies the
most difficult challenges while doing so.

While a substantial amount of research has been invested in transportation
mode detection, there is no acceptable solution, or a promising approach. Due
to the fact that research in one field continues the research in its own field, and
no inter-disciplinary solutions have been attempted and documented, there is a
substantial amount of research that still has to be invested in defining:

1) widely accepted error measures that are meaningful for both entities (points
and segments),

2) classification and model validation methods that are robust to new datasets
and not prone to overfitting, and

3) a “benchmark” dataset to validate the performance of the proposed methods.

These steps would allow the studied disciplines to reach a “common ground” by
avoiding the sole validation of new methods on newly collected and non-shared
datasets, and hopefully achieving inter-disciplinary method convergence.
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A An overview of the existing research in terms of modes identified, methods used, performance
measures, collected data, processing method (pre- or post-processing), devices used, sampling
rate, auxiliary data, and geographical regions

Table 6: Overview for the considered body of research in chronological order. The values in bold represent studies
that have the highest precision in their field (+) or highest number of classified modes in their field (*)

Author Dom. Modes1 Method.2 Perform.3 Col. data4 Other Proc.5Dev.6 Sampl. Data7 Region

Chung &
Shalaby,
2005

TSc W, Bk, C, Bu RBH PS=92.7%
1 user

60 segments
reproduced

A: NF
A: MTP
A:MM

GL – RN GTA, CA

Tsui & Shal-
aby, 2006

TSc
W,Bk, C, Bu
Sw, SC, OR

RBH
FL

PS=94%
9 users

237 segments
58 travel days

A: NF
A: MTP
A:MM

GL – RN –

Alvares et
al., 2007

HG St, Mo RBH – – – – – POI –

Palma et al.,
2008

HG St, Mo STC –
–

487 segments
– DD – POI Amsterdam, NL

Stopher et
al., 2008
(+)

TSc
W,Bk, C
Bu, Tr

RBH
PM

PS=95% –
A:SD
A:MM

DD GPS: 1Hz RN –

Bohte &
Maat, 2009

TSc
W,Bk, C

Tr, PT, O
RBH PS=70%

1104 users
33,686 segments

1 week

A:NF
A:SD

DD GPS: 0.17Hz TS NL

Continued on next page
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Author Dom. Modes Method.2 Perform.3 Col. data Other Proc. Dev. Sampling Data Region

Schüssler &
Axhausen,
2009

TSc
W,Bk, C
UPT, Tr

FL –
4,882 users

–

A:NF
A:SD

A:MTP
DD – – CH

Manzoni et
al., 2010

LBS
St, W,Bk, C

Bu, Tr,Sw, Mo
DT P 512

W =82.14%
4 users

–
10 days

A:FW SP
GPS: 1 Hz
Acc: 25Hz

– –

Reddy et al.,
2010

LBS
St, W, Bk,

Run, C
DT

DHMM
PP=93.7%
RP=93.8%

16 users
–

1 day

A:NF
A:FW

SP
GPS: 1Hz
Acc: 32Hz

– –

Rocha et
al., 2010
(+,*)

HG St, Mo DTC PS=90%
2 users

–
22 days

– DD GPS: 30 mins – BR

Wang et al.,
2010

LBS
W,Bk,St,
C, Bu, Sw

DT-J48
P 256
W =70.7%

–

7 users
5544 acc. win.

12 hours
A:FW SP Acc: 35Hz – –

Zheng et al.,
2010

CSc
W, Bk,
C, Bu

DT
PS=75.6%
RS=73.8%

65 users
–

10 months
P: GBP DD GPS: var Hz – –

Continued on next page
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Author Dom. Modes Method.2 Perform.3 Col. data Other Proc. Dev. Sampling Data Region

Schüssler et
al., 2011

TSc
W,Bk, C
UPT, Tr

FL PS=83%
15 users

322 segments
1 week

A:NF
A:SD

A:MTP
SP

GPS: ?Hz
Acc: 10Hz

TS –

Stenneth et
al., 2011

LBS
St, W,Bk,
C,Bu,Tr

RF
P 2
W=92.8%

R2
W=92.9%

6 users
–

21 days
– SP GPS: 0.07Hz

RN
TF

Chicago, USA

Biljecki et
al., 2013
(*)

TSc
W, Bk, C,
Fb, Sb, Tr,

Sw, Bu, Tm, Fl
CRF PS=91.6% 16m loc.

A:SD
A:MTP

DD GPS: var Hz RN NL

Hemminki et
al., 2013

LBS
W,St, C, Bu
Sw, Tr, Tm

HMM
AdaBoost

P var
W =84,9%

Rvar
W = 85.3%

16 users
–

150 hours
A: FW SP Acc: 100Hz – Helsinki, FI

Montini et
al., 2014

TSc
W,Bk, C

Tm, Tr, O
RF PS=85.8%

56 users
6990 segments

1 week
A: SD SP

GPS: 1 Hz
Acc: ??Hz

TS Zurich, CH

Prelipcean et
al., 2014

LBS
W,Bk,C, Fb,

Bu,Tr,Sw
RF

PP=90.8%
RP=90.9%

11 users
14k loc.
10 days

A:FW SP
GPS: 50 m
Acc: 5Hz

– Stockholm, SE

Continued on next page
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Author Dom. Modes Method.2 Perform.3 Col. data Other Proc. Dev. Sampling Data Region

Shah et al.,
2014

LBS C, Bu, Tr
DT

RBH
P 512
W =91.53%

–

15 users
129 trips
50 hours

A:MS SP
GPS: 0.2Hz
Acc: 100Hz

– San Francisco, US

Yu et al.,
2014

LBS
W,St, Bk,

Run, C

DT-J48
AdaBoost

SVM

P 512
W =91.53%

–

224 users
100GB

8,311 hours
A:FW SP Acc: 30Hz – –

Rasmussen
et al., 2015

TSc
W, Bk, C

Bu, Tr
FL PS=84.6%

183 users
521 segments

3-5 days

A: NF
A: MTP
A: MM

DD GPS: 1 Hz RN Copenhagen, DK

Prelipcean
et al., 2016
(+,*)

LBS &
TSc

W, St, Bk
Mp, C, Bu
Tr, Tm, Sw

RF

PS = 80.1%
RS = 82.4%
PP = 94.4%
RP = 94.5%

26 users
1307 segments

7 days

A: FW
A: MTP

SP
GPS: 50 m
Acc: 5Hz

- Stockholm, SE

1 The following abbreviations were used for modes: W-walk, Bk-Bike, C-Car, Fb-ferry boat, Bu-bus, Tr-train, Sw-subway, SC-street car,
OR-off road, UPT-urban public transport, Tm-tram, O-other, PT- public transportation, Sb - sail boat, Fl-flight, Mp - moped;
2 The following abbreviations were used for classification methods: RBH - rule based heuristics; FL- fuzzy logic; PM - probability ma-
trix; STC - spatio-temporal clustering; DTC - direction and time based clustering;
3 P and R denote precision and recall as computed for points (PP and RP ), segments (PS and RS) or sliding windows (PW and RW )
5 The considered procedures are either performed a-priori (A) or a-posteriori (P) with regards to the classification. The following pro-
cedures were considered: FW- form windows, MS - Markov smoother, MM - map matching, MTP - mode transfer points, NF - noise
filter, SD - segmentation
7 RN- road network; TS - public transport stops;


